【5分钟】搭建本地多模态大模型Qwen2.5-VL
针对交通场景的场景理解和识别一直是一个挑战。如何像人类一样理解场景中主车和交通参与者博弈行为,就需要一个多模态的大模型来承担此任务。最近多模态开源较不错效果是QWen-2.5VL,准备拿来小试牛刀,看看此模型效果如何。1、本地模型搭建过程3、由于在国内,安装modelscope并下载模型权重相关文件4、启动Web推理服务5、模型推理效果6、基于openai 接口形式推理安装依赖启动本地推理API服
针对交通场景的场景理解和识别一直是一个挑战。如何像人类一样理解场景中主车和交通参与者博弈行为,就需要一个多模态的大模型来承担此任务。最近多模态开源较不错效果是QWen-2.5VL, 准备拿来小试牛刀,看看此模型效果如何。
一、环境准备
#创建环境conda create -n qwen-2.5 python=3.10#激活环境conda activate qwen-2.5
二、模型部署
1、本地模型搭建过程
下载模型:
git clone https://github.com/QwenLM/Qwen2.5-VLcd Qwen2.5-VL
# 文件列表如下:cookbooks docker LICENSE qwen-vl-utils README.md requirements_web_demo.txt web_demo_mm.py web_demo_streaming
2、安装依赖:
pip install -r requirements_web_demo.txt
3、由于在国内,安装modelscope并下载模型权重相关文件
pip install modelscope
modelscope download --model Qwen/Qwen2.5-VL-3B-Instruct --local_dir ./model
4、启动Web推理服务
$ python web_demo_mm.py --checkpoint-path "Qwen/Qwen2.5-VL-3B-Instruct"Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:08<00:00, 4.13s/it]Some parameters are on the meta device because they were offloaded to the cpu.Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`./home/pony/文档/workspace/Qwen2.5-VL/web_demo_mm.py:258: UserWarning: You have not specified a value for the `type` parameter. Defaulting to the 'tuples' format for chatbot messages, but this is deprecated and will be removed in a future version of Gradio. Please set type='messages' instead, which uses openai-style dictionaries with 'role' and 'content' keys. chatbot = gr.Chatbot(label='Qwen2.5-VL', elem_classes='control-height', height=500)* Running on local URL: http://127.0.0.1:7860
To create a public link, set `share=True` in `launch()`.
5、模型推理效果


6、基于openai 接口形式推理
安装依赖
pip install git+https://github.com/huggingface/transformers@f3f6c86582611976e72be054675e2bf0abb5f775pip install acceleratepip install qwen-vl-utilspip install 'vllm>0.7.2'
启动本地推理API服务
$ vllm serve Qwen/Qwen2.5-VL-3B-Instruct --port 8000 --host 0.0.0.0 --dtype bfloat16 --limit-mm-per-prompt image=1
API推理
curl http://localhost:8000/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "Qwen/Qwen2.5-VL-3B-Instruct", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "image_url", "image_url": {"url": "https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png"}}, {"type": "text", "text": "What is the text in the illustrate?"} ]} ] }'
三、显卡性能
RTX 3070跑3B模型

三、挑战与未来应用
- 挑战方面
- 本地显存太小了,无法做7B 32B 72B的本体部署以及后续模型任务微调。
- 模型量化:需要针对此模型进行量化,以减少对高配显存的依赖。
- 模型微调
四、未来应用
在此多模态模型基础之上可以做微调,后续适配特定多模态任务,后续逐步分享针对Qwen2.5-VL的模型微调套路。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。
更多推荐



所有评论(0)