CIKM 2025 | 时间序列(Time-Series)论文总结
CIKM 2025时间序列研究综述:聚焦24篇时间序列分析论文 本文汇总了CIKM 2025会议中关于时空数据分析的24篇论文,包含16篇完整研究论文、6篇短论文和2篇应用研究论文。研究主题涵盖时间序列预测、分类、生成等多个方向,重点关注金融时间序列和大模型应用。其中,TANDEM提出基于注意力机制的神经微分方程方法处理缺失时间序列分类;Frequency-Conditioned Diffusio
CIKM是CCF B类会议。CIKM 2025将在2025年11月10号到14号在韩国首尔( Seoul, Korea)举行,本文总结了CIKM2025有关时间序列(Time Series)相关文章,共计24篇,其中1-16为Full Research Paper,17-22为Short Research Paper,23-24为Applied Research Paper。
时间序列Topic:预测,分类,金融时间序列,大模型,基础模型等。如有疏漏,欢迎补充!
| Full Research 1. TANDEM: Temporal Attention-guided Neural Differential Equations for Missingness in Time Series Classification 2. Structural Entropy-based Multivariate Time Series Forecasting 3. Frequency-Conditioned Diffusion Models for Time Series Generation 4. EAPformer: Entropy-Aware Patch Transformer for Multivariate Long-Term Time Series Forecasting 5. TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models 6. Multivariate Wind Power Time Series Forecasting with Noise-Filtering Neural ODEs 7. PromptTSS: A Prompting-Based Approach for Interactive Multi-Granularity Time Series Segmentation 8. MSOFormer: Multi-scale Transformer with Orthogonal Embedding and Frequency Modeling for Multivariate Time Series Forecasting 9. MillGNN: Learning Multi-Scale Lead-Lag Dependencies for Multi-Variate Time Series Forecasting 10. Seeing Sequences like Humans: Pattern Classification Driven Time-Series Forecasting via Vision Language Models 11. FinCast: A Foundation Model for Financial Time-Series Forecasting 12. Bidirectional Temporal-Aware Modeling with Multi-Scale Mixture-of-Experts for Multivariate Time Series Forecasting 13. HRCformer: Hierarchical Recursive Convolution-Transformer with Multi-Scale Adaptive Recalibration for Time Series Forecasting 14. WDformer: A Wavelet-Based Differential Transformer Model for Time Series Forecasting 15. AdaPatch: Adaptive Patch-Level Modeling for Non-Stationary Time Series Forecasting 16. TLCCSP: A Scalable Framework for Enhancing Time Series Forecasting with Time-Lagged Cross-Correlations Short Research 17. In-context Pre-trained Time-Series Foundation Models adapt to Unseen Tasks 18. Integrating Time Series into LLMs via Multi-layer Steerable Embedding Fusion for Enhanced Forecasting 19. Modeling Irregular Astronomical Time Series with Neural Stochastic Delay Differential Equations 20. Mixture-of-KAN for Multivariate Time Series Forecasting 21. XDNet: Disentangled Time Series Forecasting via Exponential Decomposition and 2D Periodic Modeling 22. Channel-Independent Refiner for Multivariate Time Series Forecasting Applied Research 23. Dynamic Network-Based Two-Stage Time Series Forecasting for Affiliate Marketing 24. AutoDW-TS: Automated Data Wrangling for Time-Series Data |
|---|
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
Full Research
1 TANDEM: Temporal Attention-guided Neural Differential Equations for Missingness in Time Series Classification
链接:https://arxiv.org/abs/2508.17519
作者:Yongkyung Oh (University of California, Los Angeles(UCLA), United States); , Dongyoung Lim (Ulsan National Institute of Science & Technology(UNIST), South Korea); , Sungil Kim (Ulsan National Institute of Science & Technology(UNIST), South Korea); and Alex Bui (University of California, Los Angeles(UCLA), United States)
关键词:分类,神经差分方程,注意力机制

2 Structural Entropy-based Multivariate Time Series Forecasting
作者:Xinhui Li (School of Information Science and Engineering, Yunnan_x000D_
University, Kunming, China, China); , Kun Yue (School of Information Science and Engineering, Yunnan_x000D_
University, Kunming, China, China); , Lixing Yu (School of Information Science and Engineering, Yunnan_x000D_
University, Kunming, China, China); and Peizhong Yang (School of Information Science and Engineering, Yunnan_x000D_
University, Kunming, China, China)
关键词:多元时间序列预测,熵
3 Frequency-Conditioned Diffusion Models for Time Series Generation
链接:https://openreview.net/forum?id=aIJTNrF2Sg
作者:Seungwoo Jeong (Korea University, South Korea); , Junghyo Sohn (Korea University, South Korea); , Jaehyun Jeon (Korea University, South Korea); and Heung-Il Suk (Korea University, South Korea)
关键词:时间序列生成,扩散模型,傅里叶变换

4 EAPformer: Entropy-Aware Patch Transformer for Multivariate Long-Term Time Series Forecasting
作者:Jiahao Ling (Sun Yat-sen University, China); , Xuan Yang (Sun Yat-sen University, China); , Shimin Gong (Sun Yat-sen University, China); and Bo Gu (Sun Yat-sen University, China)
关键词:长时预测,熵感知
5 TableTime: Reformulating Time Series Classification as Training-Free Table Understanding with Large Language Models
链接:https://arxiv.org/abs/2411.15737
作者:Jiahao Wang (State Key Laboratory of Cognitive Intelligence, University_x000D_
of Science and Technology of China, China); , Mingyue Cheng (State Key Laboratory of Cognitive Intelligence, University_x000D_
of Science and Technology of China, China); , Qingyang Mao (State Key Laboratory of Cognitive Intelligence, University_x000D_
of Science and Technology of China, China); , Yitong Zhou (State Key Laboratory of Cognitive Intelligence, University_x000D_
of Science and Technology of China, China); , Daoyu Wang (State Key Laboratory of Cognitive Intelligence, University_x000D_
of Science and Technology of China, China); , Qi Liu (State Key Laboratory of Cognitive Intelligence, University_x000D_
of Science and Technology of China, China); , Feiyang Xu (Artificial Intelligence Research Institute, iFLYTEK Co.,x000D
Ltd., China); and Xin Li (Artificial Intelligence Research Institute, iFLYTEK Co.,x000D
Ltd., China)
关键词:分类,表格理解,大模型

6 Multivariate Wind Power Time Series Forecasting with Noise-Filtering Neural ODEs
作者:Chang Tianyu (Software engneering, Northeastern University, China); , Dongming Chen (Software engneering, Northeastern University, China); and Dongqi Wang (Software engneering, Northeastern University, China)
关键词:风能预测,神经常微分方程
7 PromptTSS: A Prompting-Based Approach for Interactive Multi-Granularity Time Series Segmentation
链接:https://arxiv.org/abs/2506.11170
作者:Ching Chang (National Yang Ming Chiao Tung University, Taiwan); , Ming-Chih Lo (National Yang Ming Chiao Tung University, Taiwan); , Wen-Chih Peng (National Yang Ming Chiao Tung University, Taiwan); and Tien-Fu Chen (National Yang Ming Chiao Tung University, Taiwan)
关键词:时间序列分割,多粒度

8 MSOFormer: Multi-scale Transformer with Orthogonal Embedding and Frequency Modeling for Multivariate Time Series Forecasting
作者:Qin Shi (China Mobile(Suzhou)Software Technology Co., Ltd, China); , Chu Xu (China Mobile(Suzhou)Software Technology Co., Ltd, China); , Zongtang Hu (China Mobile(Suzhou)Software Technology Co., Ltd, China); , Dong Shen (China Mobile(Suzhou)Software Technology Co., Ltd, China); , Dapeng Sun (China Mobile(Suzhou)Software Technology Co., Ltd, China); and Lijun Quan (Soochow University, Jiangsu, China, China)
关键词:预测,频域建模
9 MillGNN: Learning Multi-Scale Lead-Lag Dependencies for Multi-Variate Time Series Forecasting
链接:https://arxiv.org/abs/2509.03852
作者:Binqing Wu (Zhejiang University, China); , Zongjiang Shang (Zhejiang University, China); , Jianlong Huang (Zhejiang University, China); and Ling Chen (Zhejiang University, China)
关键词:多元时序预测,图神经网络

10 Seeing Sequences like Humans: Pattern Classification Driven Time-Series Forecasting via Vision Language Models
作者:Xingyu Liu (Chongqing University, China); , Min Gao (Chongqing University, China); , Zongwei Wang (Chongqing University, China); and Yinbing Bai (Chongqing University, China)
关键词:预测,视觉语言模型
11 FinCast: A Foundation Model for Financial Time-Series Forecasting
链接:https://arxiv.org/abs/2508.19609
作者:Zhuohang Zhu (The University of Sydney, Australia); , Haodong Chen (The University of Sydney, Australia); , Qiang Qu (The University of Sydney, Australia, Australia); and Vera Chung (The University of Sydney, Australia)
关键词:金融时序基础模型

12 Bidirectional Temporal-Aware Modeling with Multi-Scale Mixture-of-Experts for Multivariate Time Series Forecasting
作者:Yifan Gao (Zhejiang University, China); , Boming Zhao (Zhejiang University, China); , Haocheng Peng (Zhejiang University, China); , Hujun Bao (Zhejiang University, China); , Jiashu Zhao (Wilfrid Laurier University, Canada); and Zhaopeng Cui (Zhejiang University, China)
关键词:多元时序预测,混合专家系统
13 HRCformer: Hierarchical Recursive Convolution-Transformer with Multi-Scale Adaptive Recalibration for Time Series Forecasting
作者:Dejiang Zhang (College of Computer Science and Technology, China University of Petroleum(East China), China, China); , Lianyong Qi (College of Computer Science and Technology, China University of Petroleum(East China), China, China); , Yuwen Liu (College of Computer Science and Technology, China University of Petroleum(East China), China, China); , Xucheng Zhou (College of Computer Science and Technology, China University of Petroleum(East China), China, China); , Jianye Xie (College of Computer Science and Technology, China University of Petroleum(East China), China, China); , Haolong Xiang (School of Software, Nanjing University of Information Science and Technology, China, China); , Xiaolong Xu (School of Software, Nanjing University of Information Science and Technology, China, China); , Xuyun Zhang (Department of Computing, Macquarie University, Australia, Australia); , Yang Cao (School of Computing and Information Technology, Great Bay University, China, China); and Yang Zhang (Anuradha and Vikas Sinha Department of Data Science, University of North Texas, USA, United States)
关键词:预测,卷积,Transformer
14 WDformer: A Wavelet-Based Differential Transformer Model for Time Series Forecasting
作者:Xiaojian Wang (Zhejiang Normal University, China); , Chaoli Zhang (Zhejiang Normal University, China); , Zhonglong Zheng (Zhejiang Normal University, China); and Yunliang Jiang (Zhejiang Normal University, China)
关键词:预测,差分,小波
15 AdaPatch: Adaptive Patch-Level Modeling for Non-Stationary Time Series Forecasting
作者:Kun Liu (East China Normal University, China); , Zhongjie Duan (East China Normal University, China); , Cen Chen (East China Normal University, China); , Yanhao Wang (East China Normal University, China); , Dawei Cheng (Tongji University, China); and Yuqi Liang (Seek Data Group, Emoney Inc., China)
关键词:非平稳时序预测
16 TLCCSP: A Scalable Framework for Enhancing Time Series Forecasting with Time-Lagged Cross-Correlations
链接:https://arxiv.org/abs/2508.07016
作者:Jianfei Wu (Beijing Normal University, China); , Wenmian Yang (Beijing Normal University, China); , Bingning Liu (Beijing Normal University, China); and Weijia Jia (Beijing Normal University, China)
关键词:时间序列预测,时间滞后互相关,对比学习

Short Research
17 In-context Pre-trained Time-Series Foundation Models adapt to Unseen Tasks
链接:https://openreview.net/forum?id=fsth7QcKOd
作者:Shangqing Xu (Georgia Institute of Technology, United States); , Harshavardhan Kamarthi (Georgia Institute of Technology, United States); , Haoxin Liu (Georgia Institute of Technology, United States); and B. Aditya Prakash (Georgia Institute of Technology, United States)
关键词:基础模型,上下文学习
18 Integrating Time Series into LLMs via Multi-layer Steerable Embedding Fusion for Enhanced Forecasting
链接:https://arxiv.org/abs/2508.16059
作者:Zhuomin Chen (Sun Yat-sen University, China); , Dan Li (Sun Yat-sen University, China); , Jiahui Zhou (Sun Yat-sen University, China); , Shunyu Wu (Sun Yat-sen University, China); , Haozheng Ye (Sun Yat-sen University, China); , Jian Lou (Sun Yat-sen University, China); and See-Kiong Ng (National University of Singapore, Singapore)
关键词:预测,大模型,嵌入聚合

19 Modeling Irregular Astronomical Time Series with Neural Stochastic Delay Differential Equations
链接:https://arxiv.org/abs/2508.17521
作者:Yongkyung Oh (University of California, Los Angeles(UCLA), United States); , Seungsu Kam (Ulsan National Institute of Science & Technology(UNIST), South Korea); , Dongyoung Lim (Ulsan National Institute of Science & Technology(UNIST), South Korea); and Sungil Kim (Ulsan National Institute of Science & Technology(UNIST), South Korea)
关键词:分类,神经差分方程

20 Mixture-of-KAN for Multivariate Time Series Forecasting
链接:https://arxiv.org/abs/2408.11306
作者:Xiao Han (University of Chinese Academy of Sciences, China); , Zhenduo Zhang (University of Chinese Academy of Sciences, China); , Xinfeng Zhang (University of Chinese Academy of Sciences, China); , Yiling Wu (Institute of Perceptual Intelligence, Pengcheng Laboratory, China); and Zhe Wu (Institute of Perceptual Intelligence, Pengcheng Laboratory, China)
关键词:预测,KAN

21 XDNet: Disentangled Time Series Forecasting via Exponential Decomposition and 2D Periodic Modeling
作者:Kening Huang (Heilongjiang University, China); , Qianqian Ren (Heilongjiang University, China); and Xingfeng Lv (Heilongjiang University, China)
关键词:预测,指数分解,周期建模
22 Channel-Independent Refiner for Multivariate Time Series Forecasting
作者:Jie Wang (Fujitsu Research and Development Center, China); , Zhongguang Zheng (Fujitsu Research and Development Center, China); , Chaoliang Zhong (Fujitsu Research and Development Center, China); and Jun Sun (Fujitsu Research and Development Center, China)
关键词:预测,通道独立
Applied Research
23 Dynamic Network-Based Two-Stage Time Series Forecasting for Affiliate Marketing
作者:Zhe Wang (Xidian University, China); , Yaming Yang (Xidian University, China); , Ziyu Guan (Xidian University, China); , Bin Tong (Alibaba Group, China); , Rui Wang (Alibaba Group, China); , Wei Zhao (Xidian University, China); and Hongbo Deng (Alibaba Group, China)
关键词:预测,电商
24 AutoDW-TS: Automated Data Wrangling for Time-Series Data
作者:Lei Liu (Fujitsu Research of America Inc., United States); , So Hasegawa (Fujitsu Research of America Inc., United States); , Shailaja Keyur Sampat (Fujitsu Research of America Inc., United States); , Mehdi Bahrami (Fujitsu Research of America Inc., United States); , Wei-Peng Chen (Fujitsu Research of America Inc., United States); , Kodai Toyota (Fujitsu Research, Japan); , Takashi Kato (Fujitsu Research, Japan); , Takumi Akazaki (Fujitsu Research, Japan); , Akira Ura (Fujitsu Research, Japan); and Tatsuya Asai (Fujitsu Research, Japan)
关键词:时序数据整理
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。
更多推荐
所有评论(0)