ICLR2026刚放榜,先统计了一波rebuttal之前的论文,总结了其中时间序列(Time Series)高分的论文。如有疏漏,欢迎大家补充。

挑选原则:由于(广义)时空比较惨淡,我选择挑选均分要大于5的论文(不取等,即使有2,有8或者更高的分拉回来也算)

时空Topic:轨迹生成,城市智能体,时空图,地球观测,天气预报等等。

:由于均未正式录用,就不再做详细总结和翻译,关键词直接采用openreview提供的关键词。

:由于均未正式录用,就不再做详细总结和翻译,关键词直接采用openreview提供的关键词。

1. TrajFlow: Nation-wide Pseudo GPS Trajectory Generation with Flow Matching Models
2. USTBench: Benchmarking and Dissecting Spatiotemporal Reasoning Capabilities of LLMs as Urban Agents
3. A General Spatio-Temporal Backbone with Scalable Contextual Pattern Bank for Urban Continual Forecasting
4. SymLight: Exploring Interpretable and Deployable Symbolic Policies for Traffic Signal Control
5. UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction
6. Enabling arbitrary inference in spatio-temporal dynamic systems: A physics-inspired perspective
7. A Novel Benchmark Framework for Neural Embeddings in Earth Observation
8. Being More Lightweight and Practical: Mini-sized Contrastive Learning Pre-trained Models for Fine-grained Traffic Tasks
9. ClimateAR: Multi-Scale Autoregressive Generative Modeling for Climate Forecasting
10. SPACeR: Self-Play Anchoring with Centralized Reference Models
11. DecompGAIL: Learning Realistic Traffic Behaviors with Decomposed Multi-Agent Generative Adversarial Imitation Learning


🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

1 TrajFlow: Nation-wide Pseudo GPS Trajectory Generation with Flow Matching Models

链接https://openreview.net/forum?id=BDOldEjwCE

关键词:Flow matching, Human Trajectory, Generative modeling, Human mobility

分数:10, 4, 6, 6

信心:5, 3, 5, 4

均分6.5

TL; DR:This paper proposed TrajFM, a flow-matching-based GPS trajectory generation model that overcomes scale, diversity, and efficiency limitations of diffusion approaches to enable nationwide, multi-scale, and multi-modal human mobility data generation.

2 USTBench: Benchmarking and Dissecting Spatiotemporal Reasoning Capabilities of LLMs as Urban Agents

链接https://openreview.net/forum?id=ETzBStUFJy

关键词:large language model, spatiotemporal reasoning, urban science

分数:6, 6, 4, 8

信心:4, 3, 4, 4

均分6.0

TL; DR:A benchmark for evaluating the urban spatiotemporal reasoning abilities of LLMs.

3 A General Spatio-Temporal Backbone with Scalable Contextual Pattern Bank for Urban Continual Forecasting

链接https://openreview.net/forum?id=LHSea6DI8U

关键词:general backbone, contextual pattern bank, continual spatio-temporal forecasting

分数:4, 8, 6

信心:3, 5, 4

均分6.0

4 SymLight: Exploring Interpretable and Deployable Symbolic Policies for Traffic Signal Control

链接https://openreview.net/forum?id=8soGuDwlxK

关键词:Reinforcement learning, traffic signal control, Monte Carlo tree search

分数:4, 4, 8, 6

信心:5, 4, 4, 5

均分5.5

TL; DR:Discovering interpretable and deployable symbolic policies for traffic signal control

5 UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction

链接https://openreview.net/forum?id=ckjNF94cIi

关键词:Spatio-Temporal Graph, Heterogeneous Graph, Dynamic Graph, Physics-Informed ML, Urban Microclimate

分数:4, 6, 6, 6

信心:4, 3, 3, 4

均分5.5

6 Enabling arbitrary inference in spatio-temporal dynamic systems: A physics-inspired perspective

链接https://openreview.net/forum?id=b6Py2zy0fK

关键词:Neural operators, Spatio-temporal systems, Graph neural networks, Data mining

分数:6, 4, 6

信心:3, 3, 4

均分5.33

7 A Novel Benchmark Framework for Neural Embeddings in Earth Observation

链接https://openreview.net/forum?id=U3k7qLgGN8

关键词:neural embeddings, benchmark framework, spatio-temporal data, Earth observation

分数:2, 6, 8

信心:5, 4, 5

均分5.33

TL; DR:a novel benchmarking pipeline for spatio-temporal neural embeddings

8 Being More Lightweight and Practical: Mini-sized Contrastive Learning Pre-trained Models for Fine-grained Traffic Tasks

链接https://openreview.net/forum?id=ZMQAGxMmE2

关键词:Fine-grained traffic prediction, Spatio-temporal modeling, Lightweight models

分数:6, 4, 6

信心:4, 5, 4

均分5.33

TL; DR:We propose a mini-sized pre-training model for fine-grained traffic. The model provides an efficient and accurate solution for fine-grained traffic with limited computational resources and data.

9 ClimateAR: Multi-Scale Autoregressive Generative Modeling for Climate Forecasting

链接https://openreview.net/forum?id=MMcyzQUPqb

关键词:Weather and climate forecasting

分数:8, 4, 4

信心:4, 4, 4

均分5.333333333333333

10 SPACeR: Self-Play Anchoring with Centralized Reference Models

链接https://openreview.net/forum?id=Q5H3NCy18S

关键词:Multi-agent reinforcement learning, traffic simulation, autonomous vehicles, planning

分数:6, 4, 6

信心:3, 4, 4

均分5.333333333333333

11 DecompGAIL: Learning Realistic Traffic Behaviors with Decomposed Multi-Agent Generative Adversarial Imitation Learning

链接https://openreview.net/forum?id=AcDx2tUZPb

关键词:traffic simulation, multi-agent imitation learning, generative adversarial imitation learning

分数:4, 4, 8

信心:4, 5, 4

均分5.33

🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅在这里插入图片描述

Logo

火山引擎开发者社区是火山引擎打造的AI技术生态平台,聚焦Agent与大模型开发,提供豆包系列模型(图像/视频/视觉)、智能分析与会话工具,并配套评测集、动手实验室及行业案例库。社区通过技术沙龙、挑战赛等活动促进开发者成长,新用户可领50万Tokens权益,助力构建智能应用。

更多推荐